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Integrability of the square-triangle random tiling model

Jan de Gier and Bernard Nienhuis
Instituut voor Theoretische Fysica, Universiteit van Amsterdam, Valckenierstraat 65, 1018 XE Amsterdam, The Netherland

~Received 4 November 1996!

It is shown that the square-triangle random tiling model is equivalent to an asymmetric limit of the three
coloring model on the honeycomb lattice. The latter model is known to be the O(n) model atT50 and
corresponds to the integrable model connected to the affineA2

(1) Lie algebra. Thus it is shown that the weights
of the square-triangle random tiling satisfy the Yang-Baxter equation, albeit in a singular limit of a more
general model. The three coloring model for general vertex weights is solved by an algebraic Bethe ansatz.
@S1063-651X~97!08303-7#

PACS number~s!: 05.20.Gg, 05.50.1q, 04.20.Jb, 61.44.Br
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I. INTRODUCTION

Random tiling models have gained renewed interest in
past years by the discovery of quasicrystals@1#. They pro-
vide an example of the entropic stability of structures who
diffraction pattern has a rotational symmetry which is inco
patible with periodicity. As such they offer an explanation
the existence of quasicrystalline alloys@2#. In analogy with
the diamond covering used to describe the ground state
figurations of the triangular Ising antiferromagnet@3#, ran-
dom tilings can be described by a domain wall structure. T
difficulty is that there is more than one type of domain wa
in contrast to the diamond covering. This fact makes it mu
more difficult to solve the model by coordinate Bethe ansa
as was tried for the octagonal square-rhombus tiling@4#. Wi-
dom @5#, however, succeeded in reducing the diagonaliza
of the transfer matrix to a set of coupled nonlinear equati
using the Bethe ansatz for the square-triangle random ti
model. This random tiling can exhibit a twelvefold rotation
symmetry if the area fractions of squares and triangles
both equal to 1/2. For example, a two-dimensional bin
alloy of Lennard-Jones atoms, whose equilibrium state
twelvefold quasicrystal, is well approximated by a rando
tiling of the plane by squares and triangles@6#. Also, high
resolution lattice images of twelvefold quasicrystals in Ni
and NiV alloys @7,8# show atomic positions at vertices o
tilings containing primarily squares and triangles. We re
the reader to@9# for more background information on th
square-triangle random tiling and its physical application

Shortly after the Bethe ansatz solution, Kalugin@10# was
able to find a closed expression for the entropy as a func
of the domain wall densities in part of the phase diagr
using Widoms equations. More recently a solution of an
tagonal random tiling has also been found@11#.

Being solvable by coordinate Bethe ansatz, it is natura
look for solutions of the Yang-Baxter equation@12# for these
models. This would provide an answer to why these mod
551063-651X/97/55~4!/3926~8!/$10.00
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are integrable and a canonical way to diagonalize the tran
matrix via the algebraic Bethe ansatz@13#. The matrix of
Boltzmann weights@12#, however, is not invertible, which is
necessary to obtain commutativity of the transfer matrix.
this paper we show that the square-triangle random til
model is a singular limit case of a more general model ob
ing the Yang-Baxter equation.

II. THE MODEL

We shall consider a vertex model on the square latt
whose Boltzmann weights are denoted by

~1!

Each edge of the lattice can be in one of three differ
states, 1,2, and 3. The partition function of the model
given by

Z5 (
config.

)
i
W~ i !, ~2!

where we sum over all configurations which are weighted
the product over the verticesi of their local Boltzmann
weightsW( i ). The explicit form of the weights can be foun
in Table I. The model can be written in terms of the weigh
W0(m,a;b,n) associated with the affine Lie algebraA2

(1) ,
which can be found in@14–16#.

W~m,a;b,nuu!5Omm8W0~m8,a;b,n8uu!On8n , ~3!

whereO5diag$x1 ,x2 ,x3%. The weightsW0(a,n;b,n) sat-
isfy the star-triangle or Yang-Baxter equation~YBE! @12#,
(
g,m9,n9

W0~m,n;n9,m9uv2u!W0~m9,a;g,m8uv !W0~n9,g;b,n8uu!

5 (
g,m9,n9

W0~n,a;g,n9uu!W0~m,g;b,m9uv !W0~m9,n9;n8,m8uv2u!. ~4!
3926 © 1997 The American Physical Society
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55 3927INTEGRABILITY OF THE SQUARE-TRIANGLE RANDOM . . .
Equation~4! can be written more elegantly by defining th
operatorsL(u)

„L~u!mn…ab5W0~m,a;b,nuu!,

La~u!: Va^C3→Va^C3, Va.C3. ~5!

The auxiliary labela is introduced for later convenience. W
shall omit it if there is no confusion on which spaceL(u)
acts. In this language the vertex statesa (a51,2,3) are rep-
resented by the standard basisea of C3. Va.Vb.C3 are
so-called auxiliary spaces, corresponding to the horizo
edges of a vertex. The transfer matrixT5(m51

3 T(u)mm on a
lattice of horizontal sizeN can be written in terms of the
local operatorsLa(u) ~5! as

Ta~u!5S )
j51

N

Oa
2La

j ~u!D , Ta~u!: Va^H→Va^H,

H5 ^
j51

N

C3, T~u!5TraTa~u!. ~6!

The trace is taken only over the auxiliary space matrix str
ture. The operatorsLa

j (u) act asLa(u) on the j th factor in
H and as the identity on all other factors,

TABLE I. Boltzmann weightsW andRmatrix corresponding to
the weightsW0. Here we use the abbreviationss05sinh(l),
s15sin(u), s25sinh(u1l).

W~m,m;m,muu!5xm
2sinh~u1l!,

W~m,n;m,nuu!5xmxne
2usgn~m2n!sinh~l!,

W~1,2;2,1uu!5x1
2y3

22sinh~u!,

W~1,3;3,1uu!5x1
2y2

22sinh~u!,

W~2,3;3,2uu!5x2
2y1

22sinh~u!,

W~2,1;1,2uu!5x2
2y3

2sinh~u!,

W~3,1;1,3uu!5x3
2y2

2sinh~u!,

W~3,2;2,3uu!5x3
2y1

2sinh~u!,

R~u!51
s2 0 0 0 0 0 0 0 0

0 y3
22s1 0 eus0 0 0 0 0 0

0 0 y2
22s1 0 0 0 eus0 0 0

0 e2us0 0 y3
2s1 0 0 0 0 0

0 0 0 0 s2 0 0 0 0

0 0 0 0 0 y1
22s1 0 eus0 0

0 0 e2us0 0 0 0 y2
2s1 0 0

0 0 0 0 0 e2us0 0 y1
2s1 0

0 0 0 0 0 0 0 0 s2

2

al

-

~7!

whereI is the identity onC3. The partition function~2! on a
lattice of sizeN3M can then be written as

Z5TrHT~u!M. ~8!

Furthermore, we define theR matrix as

„R~v2u!mn…ab5W0~m,a;b,nuv2u!,

Rab~v2u!: Va^Vb→Va^Vb . ~9!

Here too, the Roman labelsa andb indicate on which aux-
iliary spaceR is acting. Greek labels will be used to indica
matrix elements. The YBE~4! can be written as

„R~v2u!mm9…nn9@L~v !m9m8L~u!n9n8#

5@L~u!nn9L~v !mm9#„R~v2u!m9m8…n9n8, ~10!

where summation over repeated indices is understood. E
elementL(u)mn of L(u) is an operator acting onC3. We
shall regardR(u2v) as a 939 matrix which is given ex-
plicitly in Table I. In a compact notation the YBE~10! can
be written as an operator equation on the tensor prod
Va^Vb^C3. It then assumes the guise

Rab~v2u!@La~v ! ^Lb~u!#5@Lb~u! ^La~v !#Rab~v2u!.
~11!

From Eq. ~11! we obtain the YBE for the matrixT(u) as
defined in Eq.~6!.

Rab~v2u!@Ta~v ! ^Tb~u!#5@Tb~u! ^Ta~v !#Rab~v2u!.
~12!

From expression~8! for the partition sum one sees that th
leading term is given by the largest eigenvalue ofT. For the
sake of completeness we give the explicit diagonalization
the transfer matrix using the algebraic Bethe ansatz in
Appendix. This is just a special case of the trigonomet
case of Kulish and Reshetikhin@17#.

III. HONEYCOMB LATTICE

As was already shown by Reshetikhin@18#, at a special
value of the spectral parameteru, the model defined by the
weightsW0 factorizes on the honeycomb lattice. In this se
tion we rederive this result for the model in Table I. Consid
the operators

OL~u!Ot: C3^V→V^C3, ~13!

where t is the permutation operator inC3^C3 ~recall that
V.C3), t(ea ^eb)5eb ^ea . The eigenvectors of
OL(u)Ot are given by
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3928 55JAN de GIER AND BERNARD NIENHUIS
ēg5
1

A11e22l
~xbygeb ^ea2yg

21xae
2lea ^eb!,

f̄ ~ba!5
1

A11 e2l
~ygxbeb ^ea1yg

21xae
lea ^eb!,

f̄ ~gg!5eg ^eg , ~14!

with (a,b,g) a cyclic permutation of~1,2,3!. These vectors
satisfy the eigenvalue equations

OL~u!Otēg52xaxbsinh~u2l!ēg ,

OL~u!Ot f̄ ~mn!5xmxnsinh~u1l! f̄ ~mn! . ~15!

Thus atu52l the operatorLt becomes a projector.
Introducing the dual vectorsēg* with the properties

ēg* •ēg85xaxbdgg8, ~16!

we can writeOLOt at u52l as

OL~2l!Ot5sinh~2l! (
g51

3

ēgēg* . ~17!

Give the y vertices of the honeycomb lattice the weigh
ēg* •(eb ^en) and thel vertices the weights (em ^ea)•ēg .
Graphically, the matrix element„L(2l)tmb…an , corre-
sponding to the vertex weightW(m,a;b,nu2l), can be
written as a sum over products of two vertices of the hon
comb lattice, see Fig. 1.

It follows that the model on the honeycomb lattice w
the vertex weights given in Fig. 2@where (123) →
(ABC)# has the same partition function as the model
Table I atu52l on the square lattice. More precisely,

sinh~l!2NMZNM
SQ ~u52l!5Z2NM

HC ~l!. ~18!
-

The partition function does not change if we apply a gau
transformation to the weights. If we multiply the weights b
the factors shown in Fig. 2 and chooseb52e2l/3a and
c5e22l/3a and setxi5yi51, we obtain the partition sum o
the fully packed loop~FPL! model on the honeycomb lattic
@18–21#,

ZNM
SQ ~u52l!5sinh~l!NM(

Ĉ

nN~Ĉ!. ~19!

The sum runs over all dense loop coveringsĈ of the honey-
comb lattice.N(Ĉ) is the number of loops in the coverin
Ĉ andn52cosh(l) is the loop fugacity.

The edge states may be interpreted as differences mo
three ~going clockwise around each vertex! between three-
state Potts variables on the vertices of the triangular lattice
the statesA, B andC are interpreted as differences 0,1, a
2, the corresponding Potts model allows only configuratio
on the triangle in which two variables are equal and the th
is different. The fully ferromagnetic and the completely a
tiferromagnetic arrangements are then excluded. This mo
has competing ferromagnetic two-spin and antiferromagn
three-spin interactions.

IV. SQUARE-TRIANGLE TILING

Take the dual of the honeycomb lattice and associate
each edge of this triangular lattice the corresponding s

FIG. 1. Factorization of the weights.
rmations
FIG. 2. Vertex configurations on the honeycomb lattice. On the first line their weights and on the second line the gauge transfo
are given.
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55 3929INTEGRABILITY OF THE SQUARE-TRIANGLE RANDOM . . .
variable of the honeycomb lattice. Relabel the states of
horizontal axis byA, B, C → 0, 1, 2, on the ascending
diagonal byA, B, C → 1, 2, 0 and on the descending
diagonal byA, B, C → 2, 0, 1. The partition sum~18! is
then equal to the partition sum of a model on the triangu
lattice with face configurations given in Fig. 3.

Now let x1
215x25x35x1/2 and y15y25y35x21/2. If

x50 the faces with a 0 on allthree edges vanish. In that cas
the states1 and2 can be regarded as rotation angles
edges with respect to a fixed triangular lattice. Take the
angles6p/12 and wipe out every edge with state 0. In th
way the model maps onto the square triangle random tili
model. The state 0 corresponds to the diagonal of a squa

The eigenvalue expression~A28! in the limit u52l be-
comes

L~2l!5xn11n2sinh~2l!N)
k51

n1 sinh~uk
~1!!

sinh~uk
~1!1l!

3)
l51

n2 sinh~ul
~2!12l!

sinh~ul
~2!1l!

1xn2sinh~2l!N)
l51

n2 sinh~ul
~2!!

sinh~ul
~2!1l!

. ~20!

The Bethe ansatz equations~A26! and~A27!, for the two sets
of momenta, become

)
k51

n1 sinh~uj
~2!2uk

~1!!

sinh~uj
~2!2uk

~1!1l! )
lÞ j51

n2 sinh~uj
~2!2ul

~2!1l!

sinh~uj
~2!2ul

~2!2l!
5xn1,

~21!

and

S sinh~uj~1!1l!

sinh~uj
~1!!

D N5xN1n2)
k51
kÞ j

n1 sinh~uj
~1!2uk

~1!1l!

sinh~uj
~1!2uk

~1!2l!

3)
l51

n2 sinh~uj
~1!2ul

~2!2l!

sinh~uj
~1!2ul

~2!!
. ~22!

For x51, these are the Bethe ansatz equations in@18# and
@20#. It must be noted that these equations can also be
rived from a coordinate Bethe ansatz. For the FPL model t

FIG. 3. Face configurations on the triangular lattice correspon
ing to the vertex configurations in Fig. 2.
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was done by Baxter@22# whose method can be generalize
slightly to obtain Eqs.~21! and~22!. For our purposes, taking
the limit x→0, it is more convenient to use Baxter’s var
ables. This can be accomplished by making the follow
substitutions:

sj5
xsinh~uj

~1!!

sinh~uj
~1!1l!

, tm52
xsinh~um

~2!!

sinh~um
~2!1l!

. ~23!

On taking the limitx→0 we arrive at the following expres
sions for the Bethe ansatz equations and the eigenvalu
the transfer matrix of the square-triangle tiling in its triang
lar lattice representation

sj
N5~2 !n121)

n51

n2

~sj
212tn

21!,

)
k51

n1

~sk
212tm

21!5~2 !n221, ~24!

L5S ~2 !n21)
k51

n1

skD )
n51

n2

tn . ~25!

These equations can be solved analogously to the orig
solution of the square-triangle random tiling by Kalugin@10#.

V. CONCLUSION

We have made a connection between the recently so
square-triangle random tiling model and a known solva
lattice model. It follows from Table I and the substitutio
yi5x21/2 that theR matrix for the square-triangle tiling
(x50) is either singular or contains infinite elements. As
result the transfer matrix of the square-triangle tiling mod
is a limit of a family of commuting transfer matrices, but
itself not a member of such a family. For any finitex though
theR matrix is invertible, which implies integrability via the
Yang-Baxter equation for this more general model. T
square-triangle random tiling thus is a singular limit of
model which is integrable in the usual sense. To obtain
weights of the square-triangle model one has to take the l
u→2l first and then takex→0. These two limits do not
commute.

One final point can be made about the robustness of i
grability. The square-triangle tiling has been solved in th
different ways. One is that of Widom and Kalugin@5,10#, the
second can be found in@23# and the third one in this paper
All these methods only differ in their choice of represen
tion, which of course should not influence integrability.
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APPENDIX A:
DIAGONALIZATION OF THE TRANSFER MATRIX

We write the matrix T(u) as an operator on
(V(0)

%V(1))^H.V^H,

T~u!5S A~u! B~u!

C~u! D~u!
D . ~A1!

The entries ofT(u) act on the following spaces:
A~u!: V~0!
^H→V~0!

^H, B~u!: V~1!
^H→V~0!

^H,

C~u!: V~0!
^H→V~1!

^H, D~u!: V~1!
^H→V~1!

^H.
~A2!

V(0).C andV(1).C2 are the subspaces ofV corresponding
to the natural embedding ofC2 in C3. TheR matrix has the
following form on the standard basis of (Va

(0)
%Va

(1))
^ (Vb

(0)
%Vb

(1)),
rix

all

One
Rab~u!5S sinh~u1l! 0 0 0

0 sinh~u!Ub
21 eusinh~l!I ~1!~0! 0

0 e2usinh~l!I ~0!~1! sinh~u!Ua 0

0 0 0 Rab
~1!~u!

D . ~A3!

Here,Va
(0)

^Vb
(1) ——→

I (0)(1)

Va
(1)

^Vb
(0) ——→

I (1)(0)

Va
(0)

^Vb
(1) are canonical isomorphisms and

U5S y32 0

0 y2
2D . ~A4!

With the notationUa we denote the operator that acts asU in the spaceVa
(1) and trivial everywhere else. The reduced mat

Rab
(1) : Va

(1)
^Vb

(1)→Va
(1)

^Vb
(1) has the same structure as the fullR matrix

Rab
~1!~u!5S sinh~u1l! 0 0 0

0 y1
22sinh~u! eusinh~l! 0

0 e2usinh~l! y1
2sinh~u! 0

0 0 0 sinh~u1l!

D . ~A5!

From the relation~12! all commutation relations between the operatorsA,B,C, andD can be obtained. In the sequel we sh
only need the following three of them:

Ab~u! ^Ba~v !5sinh~v2u!21@sinh~v2u1l!Ba~v ! ^Ab~u!2ev2usinh~l!Bb~u! ^Aa~v !I ~1!~0!#Ua
21 , ~A6!

Da~v ! ^Bb~u!5sinh~v2u!21Ua
21@Bb~u! ^Da~v !Rab

~1!~v2u!2eu2vsinh~l!I ~0!~1!Ba~v ! ^Db~u!#. ~A7!

Ba~u! ^Bb~v !5sinh~v2u1l!21Bb~v ! ^Ba~u!Rab
~1!~v2u!. ~A8!

The first step in diagonalizingT is to construct candidates for its eigenvectors. This construction will be outlined below.
first defines a ‘‘pseudovacuum’’F (0) on whichT(u) is upper trigonal,

F ~0!5 ^
j51

N

e1 , e15S 10
0
D . ~A9!

It then follows that

Ta~u!F ~0!5S x1
2Nsinh~u1l!NF ~0! * *

0 ~x2
2y3

2!Nsinh~u!NF ~0! *

0 0 ~x3
2y2

2!Nsinh~u!NF ~0!
D . ~A10!



n
e

ig
le

ch

f

ws

-

55 3931INTEGRABILITY OF THE SQUARE-TRIANGLE RANDOM . . .
F (0) therefore is an eigenvector ofT(u). To obtain more
eigenvectors we make the following ansatz:

F5Bn1
~un1

~1!! ^ •••^B1~u1
~1!!F ~1!,n1,

F ~1!,n1PVn1
~1!
•••^V1

~1!
^F ~0!. ~A11!

The vectorsF (1),n1 will be found later. Schematically, we
can represent the action of the transfer matrix onF as an
(n111)3N lattice, see Fig. 4. The stateF (0) is represented
by N vertical edges and the action of each of theBi(ui

(1)) by
a horizontal line. The action ofD(u) on the resulting vector
F is given by the upper horizontal line. The commutatio
rule ~A7! can now be represented graphically by shifting th
upper line downwards using the YBE~12!. In a similar fash-
ion we can get a graphical representation of Eq.~A6!.

The factors that arise after commutation are given in F
4 by the external vertices. For example, the vertex on the
of the second diagram of Fig. 4 corresponds toR(1)(u2

u1
(1)) and the one on the right to sinh(u2u1

(1))21Ua
21 It fol-

lows from the relations~A6! and ~A7! that

A~u!F5x1
2Nsinh~u1l!N)

k51

n1 sinh~uk
~1!2u1l!

sinh~uk
~1!2u!

3Bn1
~un1

~1!! ^ •••^B1~u1
~1!!Un1

21
^ •••^U1

21F ~1!,n1

1~unwanted terms!. ~A12!

Da~u!F5)
k51

n1

sinh~u2uk
~1!!21

3Bn1
~un1

~1!! ^ •••^B1~u1
~1!!Ta

~1!~u;$uk
~1!% !F ~1!,n1

1~unwanted terms!. ~A13!

The reduced transfer matrix is given by

Ta
~1!~u;$uk

~1!% !5Ua
2n1Da~u!Ra1

~1!~u2u1
~1!!•••Ran1

~1! ~u2un1
~1!!,

Ta
~1!~u;$uk

~1!% !: 	Va
~1!

^Vn1
~1!

^ •••V1
~1!

^H. ~A14!

The ‘‘unwanted terms’’ are similar to Eq.~A12! and ~A13!
but now one of theBj hasu instead ofuj

(1) as its argument.
Provided that the ‘‘unwanted terms’’ vanish, the vectorF
will thus be an eigenvector ofT(u)5A(u)1TraDa(u) with
eigenvalueL(u), given by

FIG. 4. Commutation rule~A7! for n152.
.
ft

L~u!5x1
2Nsinh~u1l!N)

k51

n1 sinh~uk
~1!2u1l!

sinh~uk
~1!2u!

m~U !

1)
k51

n1

sinh~u2uk
~1!!21L~1!~u!. ~A15!

Un1
21

^ •••^U1
21 and T (1)(u;$uk

(1)%) are diagonal with ei-

genvaluesm(U) and L (1)(u), respectively. For the ‘‘un-
wanted terms,’’ it is easily seen that the terms in whi
Bn1

(un1
(1)) is replaced byBn1

(u) are~up to a common multi-

plicative factor! precisely of the form~A12! and~A13! with
u andun1

(1) interchanged and the factor withk5n1 omitted.

Using the commutation rule forB(u)B(v) it can be shown
that the same also holds for the terms withBj (uj

(1)) replaced
by Bj (u). The ‘‘unwanted terms’’ will therefore cancel i
L(uj

(1))50, or

x1
2Nm~U !sinh~uj

~1!1l!N)
k51

n1

sinh~uj
~1!2uk

~1!2l!

52L~1!~uj
~1!!. ~A16!

The problem of finding the eigenvectorsF (1),n1 of T(1) is
completely analogous to the construction above. It follo
from the commutation rule:

Rab
~1!~v2u!Da~v ! ^Db~u!5Db~u! ^Da~v !Rab

~1!~v2u!
~A17!

and the fact thatRab
(1) has the same form asRab that T

(1)

obeys the YBE

Rab
~1!~v2u!@Ta

~1!~v;$uk
~1!% ! ^Tb

~1!~u;$uk
~1!% !#

5@Tb
~1!~u;$uk

~1!% ! ^Ta
~1!~v;$uk

~1!% !#Rab
~1!~v2u!.

~A18!

Writing T(1)(u;$uk
(1)%) as

T~1!~u;$uk
~1!% !5S a~u! b~u!

c~u! d~u!
D , ~A19!

sinceR(1)(u) has the same structure asR(u), we deduce
from Eqs.~A6! and ~A7! that

a~u!b~v !5sinh~v2u!21@sinh~v2u1l!b~v !a~u!

2ev2usinh~l!b~u!a~v !#y1
22 , ~A20!

d~v !b~u!5y1
22sinh~v2u!21@sinh~v2u1l!b~u!d~v !

2eu2vsinh~l!b~v !d~u!#, ~A21!

where nowb(u) andb(v) commute. Defining the ‘‘pseudo
vacuum’’ F (1)(0) in Vn1

(1)
^ •••^V1

(1) as

F ~1!~0!5 ^
j51

n1
e1

~1! , e1
~1!5S 10D , ~A22!
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the eigenvectors ofT (1)(u) are given by

F ~1!,n15b~u1
~2!!•••b~un2

~2!!F ~1!~0!
^F ~0!. ~A23!

Graphically, the action ofT (1)(u) onF (1),n1 is depicted in
Fig. 5. This diagram arises from Fig. 4 whenD(u) is
dragged down through allB’s and all unwanted diagrams are
discarded. The edges on the diagonal on the left in Fig
now represent the ‘‘pseudo-vacuum’’F (1)(0) in the space
Vn1
(1)

^ •••^V1
(1) . The action of thebi on F (1)(0) is repre-

sented by building a lattice on this diagonal in the same w
as the operatorsBi did onF

(0), see Fig. 4. The commutation
rules ~A20! and ~A21! can then be represented graphical
similarly.

The eigenvaluesL (1) corresponding to the vectors~A23!
are given by

FIG. 5. Action ofT (1)(u) on F (1)(0)
^F (0).
5

y

L~1!~u!5y3
22n1~x2

2y3
2!Ny1

22n2sinh~u!N)
k51

n1

sinh~u2uk
~1!1l!

3)
l51

n2 sinh~ul
~2!2u1l!

sinh~ul
~2!2u!

1y2
22n1~x3

2y2
2!Ny1

2n122n2sinh~u!N

3)
k51

n1

sinh~u2uk
~1!!3)

l51

n2 sinh~u2ul
~2!1l!

sinh~u2ul
~2!!

.

~A24!

The eigenvaluem(U) is simply given by

m~U !5y3
22n112n2y2

22n2 . ~A25!

The ‘‘unwanted terms’’ generated by the action ofT(1)(u)
on Eq. ~A23! can be read off from Eqs.~A20! and ~A21!.
Using the commutativity ofb(u) and b(v) they can be
shown to cancel and make Eq.~A23! an eigenvector pre-
cisely whenL (1)(uk

(2))50. The numbers$uk
(2)% therefore

satisfy the equations

)
k51

n1 sinh~uj
~2!2uk

~1!!

sinh~uj
~2!2uk

~1!1l! )
l51
lÞ j

n2 sinh~uj
~2!2ul

~2!1l!

sinh~uj
~2!2ul

~2!2l!

5S x22y32y2
2x3

2D NS y2
2

y1
2y3

2D n1. ~A26!

Knowing L (1)(u) the first set of equations as given by E
~A16! becomes
S sinh~uj~1!1l!

sinh~uj
~1!!

D N5S x22y32x1
2 D NS y2

2

y1
2y3

2D n2)
k51
kÞ j

n1 sinh~uj
~1!2uk

~1!1l!

sinh~uj
~1!2uk

~1!2l! )l51

n2 sinh~uj
~1!2ul

~2!2l!

sinh~uj
~1!2ul

~2!!
. ~A27!

The eigenvalue combining the expressions~A15! and ~A24! becomes

L~u!5x1
2Ny3

22n112n2y2
22n2sinh~u1l!N)

k51

n1 sinh~u2uk
~1!2l!

sinh~u2uk
~1!!

1~x2
2y3

2!Ny3
22n1y1

22n2sinh~u!N)
k51

n1 sinh~u2uk
~1!1l!

sinh~u2uk
~1!!

3)
l51

n2 sinh~u2ul
~2!2l!

sinh~u2ul
~2!!

1~x3
2y2

2!Ny2
22n1y1

2n122n2sinh~u!N)
l51

n2 sinh~u2ul
~2!1l!

sinh~u2ul
~2!!

. ~A28!
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